Câu hỏi:
07/07/2022 145Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) trong trường hợp \(\overrightarrow a \left( {3;1} \right),\overrightarrow b \left( {2;4} \right)\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là B
Ta có: \(\overrightarrow a .\overrightarrow b = 3.2 + 1.4 = 10\)
\(\left| {\overrightarrow a } \right| = \sqrt {{3^2} + {1^2}} = \sqrt {10} ,\left| {\overrightarrow b } \right| = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \)
\(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) \Rightarrow c{\rm{os}}\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{10}}{{\sqrt {10} .2\sqrt 5 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {45^0}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:
Câu 2:
Khi nào thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}?\)
Câu 3:
Câu 4:
Khi nào thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) vuông góc?
Câu 5:
Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?
Câu 6:
Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.
về câu hỏi!