Câu hỏi:

29/07/2022 791

Cho ΔABC nhọn có A^=600. Chứng minh rằng: BC2=AB2+AC2AB.AC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn có góc A = 60 độ. Chứng minh rằng:  (ảnh 1)

Vẽ BHACΔAHB nửa đều và ΔBHC vuông tại H

BC2=AH2+HC2=AB2AH2+ACAH2
BC2=AB2AH2+AC22.AC.AH+AH2
BC2=AB2+AC22.AC.AH

BC2=AB2+AC2AB.AC (do ΔBHC nửa đều nên AB = 2AH) (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, có AB = 5cm, AC = 12cm. Giải tam giác ABC. (ảnh 1)

Áp dụng định lý Pytago vào ΔABC vuông tại A, ta có:

BC2=AB2+AC2BC=52+122=13(cm)sinB=ACBC=1213B^=670C^=900670=230
Vậy BC=13cm,B^=670,C^=220

Lời giải

Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, AH là đường cao. (ảnh 1)
a) Ta có: BC2=152=225AB2+AC2=92+122=225BC2=AB2+AC2

BC2=AB2+AC2ΔABC vuông tại A (định lý Pytago đảo)

b   b) Áp dụng hệ thức lượng vào ΔABC vuông tại A, đường cao AH

AB2=BH.BCBH=AB2BC=9215=5,4(cm)HC=9,6cm

c   c) BH.HC=AH2. Gọi M là trung điểm BC mà AHAM=12BC (tính chất đường trung tuyến) BH.HC12BC2BH.HC14BC2. Dấu "=" xảy ra HM

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP