Câu hỏi:

13/07/2024 3,126

Tìm điểm thuộc đồ thị hàm số có tung độ bằng 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Gọi điểm thuộc đồ thị hàm số có tung độ bằng 1 là (a; 1).

Quan sát trên đồ thị hàm số ta thấy các điểm như trên thỏa mãn a [– 3; 0] thì tung độ đều bằng 1.

Vậy điểm điểm thuộc đồ thị hàm số có tọa độ (a; 1) với a [– 3; 0].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là D

Xét công thức x + 2y = 3 y = \( - \frac{1}{2}\)x + 3;

Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức y = \(\sqrt {{x^2} - 2x} \)

Với mỗi giá trị của x ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức y = \(\frac{1}{x}\)

Với mỗi giá trị x ≠ 0 ta xác định được duy nhất một giá trị của y nên công thức này y là hàm số của x.

Xét công thức: x2 + y2 = 4 y2 = – x2 + 4 y = \( \pm \sqrt { - {x^2} + 4} \).

Ta thấy ở công thức này, với mỗi giá trị của x thỏa mãn điều kiện – x2 + 4 ≥ 0 ta xác định được 2 giá trị của y. Do đó công thức này không biểu diễn y là hàm số của x.

Lời giải

Lời giải

Đặt y = f(x) = \(\frac{{ - 2}}{x}\).

Tập xác định của hàm số D = ℝ \ {0}.

Lấy x1, x2 (–∞; 0) thỏa mãn x1 < x2 < 0

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (–∞; 0).

Lấy x1, x2 (0; +∞) thỏa mãn 0 < x1 < x2

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (0; +∞).

Vậy hàm số đồng biến trên khoảng (–∞; 0) và (0; +∞).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP