Câu hỏi:

13/07/2024 3,635

Cho hàm số y = \(\frac{{ - 2}}{x}\). Chứng tỏ hàm số đã cho đồng biến trên khoảng (–∞; 0) và (0; +∞).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đặt y = f(x) = \(\frac{{ - 2}}{x}\).

Tập xác định của hàm số D = ℝ \ {0}.

Lấy x1, x2 (–∞; 0) thỏa mãn x1 < x2 < 0

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (–∞; 0).

Lấy x1, x2 (0; +∞) thỏa mãn 0 < x1 < x2

Vì x1 < x2 nên \(\frac{2}{{{x_1}}} > \frac{2}{{{x_2}}}\) \(\frac{{ - 2}}{{{x_1}}} < \frac{{ - 2}}{{{x_2}}}\) hay f(x1) < f(x2).

Do đó hàm số đồng biến trên khoảng (0; +∞).

Vậy hàm số đồng biến trên khoảng (–∞; 0) và (0; +∞).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong các công thức sau, công thức nào không biểu diễn y là hàm số của x?

A. x + 2y = 3.

B. y = \(\sqrt {{x^2} - 2x} \).

C. y = \(\frac{1}{x}\).

D. x2 + y2 = 4.

Xem đáp án » 13/07/2024 3,473

Câu 2:

Cho bảng biến thiên hàm số y = f(x) như sau:

Media VietJack

Tìm khoảng đồng biến, khoảng nghịch biến của hàm số y = f(x).

Xem đáp án » 13/07/2024 3,332

Câu 3:

Xác định f(0); f(3).

Xem đáp án » 13/07/2024 2,791

Câu 4:

So sánh f(– 2021) và f(– 1); f(\(\sqrt 3 \)) và f(2).

Xem đáp án » 13/07/2024 2,149

Câu 5:

Cho hàm số: f(x) = \(\left\{ \begin{array}{l} - x + 1\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 0\end{array} \right.\).

Tìm tập xác định của hàm số trên.

Xem đáp án » 13/07/2024 2,097

Câu 6:

Tìm tập xác định của mỗi hàm số sau:

 y = – x3 + 4x – 1;

Xem đáp án » 13/07/2024 1,894

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store