Câu hỏi:

01/08/2022 605

Cho tam giác ABC nhọn các đường cao BD, CE cắt nhau tại H

a) CMR: B, E, D, C cùng thuộc một đường tròn

b) CMR: A, D, H, E cùng thuộc một đường tròn

c) CMR: BC>DE,AH>DE

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nhọn các đường cao BD, CE cắt nhau tại H  a) CMR: (ảnh 1)
a) Gọi O là trung điểm của BC. Theo tính chất đường trung tuyến trong tam giác vuông
EO=DO=BO=CO=12BC

Gọi I là trung điểm AH. Theo tính chất đường trung tuyến trong tam giác vuông

IE=IA=IH=ID=12AH A,D,H,Eđường trong (I; IA)

Trong (O) ta có BC là đường kính, DE là dây cung BC>DE

Trong (I) ta có AH là đường kính, DE là dây cung nên AH>DE

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O; R) và một dây cung AB. Gọi I là trung điểm của AB. Tia OI (ảnh 1)

a) Vì I là trung điểm của AB OIAB (tính chất đường kính dây cung)

Vì AB=6cmAI=AB2=3(cm)

ΔAOI vuông tại I, theo định lý Pytago

OI=OA2AI2=5232=4(cm)

IM=OMOI=54=1(cm)

ΔAIM vuông tại I, theo định lý Pytago

AM=AI2+IM2=32+12=10(cm)

Vậy AM=10cm

b) ΔNAI vuông tại I, áp dụng định lý Pytago

NI=NA2AI2=5232=4NM=NI+IM=4+1=5cmR=52cm

 

Lời giải

Cho đường tròn (O; R), A và B di động trên đường tròn (O) thỏa mãn (ảnh 1)

a) Ta có AB là dây cung mà OHABH là trung điểm AB (tính chất đường kính – dây cung)

b) ΔOAB cân tại O (OA = OB = R), có OH là đường cao OH là đường phân giác

AOH^=BOH^=600

ΔAHO vuông tại H có AOH^=600ΔAOH đều
OH=12OA=R2 và AH=32OA=R32AB=2AH=R32.2=R3

OH=R2,OC=ROH=12OCH là trung điểm OC

c) Tứ giác OACB có hai đường chéo OC, AB vuông góc nhau tại trung điểm mỗi đường OBCA là hình thoi

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay