Câu hỏi:
11/07/2024 1,443Tìm m để phương trình – x2 + (m + 2)x + 2m – 10 = 0 có nghiệm.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Xét phương trình – x2 + (m + 2)x + 2m – 10 = 0 có ∆ = (m + 2)2 – 4.(– 1).(2m – 10) = m2 + 12m – 36.
Để phương trình đã cho có nghiệm thì ∆ ≥ 0 ⇔ m2 + 12m – 36 ≥ 0
Xét tam thức bậc hai f(m) = m2 + 12m – 36, có a = 1, ∆m = 122 – 4.1.(– 36) = 288 > 0.
Do đó tam thức có hai nghiệm phân biệt m1 = \( - 6 - 6\sqrt 2 \) và m1 = \( - 6 + 6\sqrt 2 \).
Áp dụng định lí về dấu của tam thức bậc hai ta có: f(m) ≥ 0 khi m ∈\(\left( { - \infty ; - 6 - 6\sqrt 2 } \right) \cup \left( { - 6 + 6\sqrt 2 ; + \infty } \right)\).
Vậy m ∈\(\left( { - \infty ; - 6 - 6\sqrt 2 } \right) \cup \left( { - 6 + 6\sqrt 2 ; + \infty } \right)\) thì phương trình đã cho có nghiệm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tập nghiệm của bất phương trình – x2 + 3x + 18 ≥ 0 là:
A. [ – 3; 6];
B. (– 3; 6);
C. (– ∞; – 3) ∪ (6; +∞);
D. (– ∞; – 3] ∪ [6; +∞).
Câu 4:
Trong các bất phương tình sau, bất phương trình nào không là bất phương trình bậc nhất một ẩn?
A. – 2x2 + 3x < 0;
B. 0,5y2 – \(\sqrt 3 \)(y – 2) ≤ 0;
C. x2 – 2xy – 3 ≥ 0;
D. \(\sqrt 2 \)x2 – 3 ≥ 0.
Câu 6:
về câu hỏi!