Đăng nhập
Đăng ký
818 lượt thi 15 câu hỏi 30 phút
1326 lượt thi
Thi ngay
1281 lượt thi
435 lượt thi
845 lượt thi
1059 lượt thi
1061 lượt thi
Câu 1:
Cho E và \(\overline E \) là hai biến cố đối nhau. Chọn câu đúng.
A. P(E) = 1 + P(\(\overline E \));
B. P(E) = P(\(\overline E \));
C. P(E) = 1 - P(\(\overline E \));
D. P(E) + P(\(\overline E \)) = 0.
Câu 2:
Gieo 3 đồng tiền xu là một phép thử ngẫu nhiên có không gian mẫu là:
A. {NN; NS; SN; SS};
B. {NNN; SSS; NNS; SSN; NSN; SNS};
C. {NNN; SSS; NNS; SSN; NSN; SNS; NSS; SNN};
D. {NNN; SSS; NNS; SSN; NSS; SNN}.
Câu 3:
Cho phép thử có không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Các cặp biến cố không đối nhau là
A. A = {1} và B = {2; 3; 4; 5; 6};
B. C = {1; 4; 5} và D = {2; 3; 6}; .
C. E = {1; 4; 6} và F = {2; 3};
D. Ω và \[\emptyset \].
Câu 4:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá át hay lá rô là
A. \(\frac{1}{{52}}\);
B. \(\frac{2}{{13}}\);
C. \(\frac{4}{{13}}\);
D. \(\frac{{17}}{{52}}\).
Câu 5:
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không gian mẫu là:
A. 9;
B. 18;
C. 29;
D. 39.
Câu 6:
Gieo con súc sắc hai lần. Gọi A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm xuất hiện. Số phần tử của biến cố A là:
A. 8;
B. 9;
C. 10;
D. 11.
Câu 7:
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được một lá rô hay một lá hình người là:
A. \(\frac{{17}}{{52}}\);
B. \(\frac{{11}}{{26}}\);
C. \(\frac{3}{{13}}\);
D. \(\frac{5}{{13}}\).
Câu 8:
Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:
A. \(\frac{3}{5}\);
B. \(\frac{3}{7}\);
C. \(\frac{3}{{11}}\);
D. \(\frac{3}{{14}}\).
Câu 9:
Trong một lớp học gồm có 18 học sinh nam và 17 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi có cả nam và nữ bằng:
A. \(\frac{{65}}{{71}}\);
B. \(\frac{{69}}{{77}}\);
C. \(\frac{{443}}{{506}}\);
D. \(\frac{{68}}{{75}}\).
Câu 10:
Đội thanh niên xung kích của trường THPT có 12 học sinh gồm 5 học sinh khối 12, 4 học sinh khối 11 và 3 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh để làm nhiệm vụ mỗi buổi sáng. Tính xác suất sao cho 4 học sinh được chọn thuộc không quá hai khối.
Hướng dẫn giải
A. \(\frac{5}{{11}}\);
B. \(\frac{6}{{11}}\);
C. \(\frac{{21}}{{22}}\);
D. \(\frac{{15}}{{22}}\).
Câu 11:
Trong một hộp có 10 viên bi đánh số từ 1 đến 10, lấy ngẫu nhiên ra hai bi. Tính xác suất để hai bi lấy ra có tích hai số trên chúng là một số lẻ.
A. \(\frac{1}{2}\);
B. \(\frac{4}{9}\);
C. \(\frac{1}{9}\);
D. \(\frac{2}{9}\).
Câu 12:
Trong giải bóng đá nữ ở trường THPT có 12 đội tham gia, trong đó có hai đội của hai lớp 12A2 và 11A6. Ban tổ chức tiến hành bốc thăm ngẫu nhiên để chia thành hai bảng đấu A, B mỗi bảng 6 đội. Xác suất để 2 đội của hai lớp 12A2 và 11A6 ở cùng một bảng là:
A. \(\frac{4}{{11}}\);
B. \(\frac{3}{{22}}\);
C. \(\frac{5}{{11}}\);
D. \(\frac{5}{{22}}\).
Câu 13:
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba:
A. \(\frac{{10}}{{216}}\);
B. \(\frac{{15}}{{72}}\);
C. \(\frac{{16}}{{216}}\);
D. \(\frac{5}{{72}}\).
Câu 14:
Cho X = {0; 1; 2; … ; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong ba số được chọn không có hai số liên tiếp.
A. \(\frac{{13}}{{35}}\);
B. \(\frac{7}{{20}}\);
C. \(\frac{{20}}{{35}}\);
D. \(\frac{{13}}{{20}}\).
Câu 15:
Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm
A. \(\frac{7}{{12}}\);
B. \(\frac{{23}}{{36}}\);
C. \(\frac{{17}}{{36}}\);
D. \(\frac{5}{{36}}\).
164 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com