Câu hỏi:

12/07/2024 7,572

Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC

a) Chứng minh rằng: tứ giác BDCE là hình thoi

b) Gọi I là giao điểm của OC và đường tròn (O'). Chứng minh ba điểm D, A, I thẳng hàng

c) Chứng minh rằng KI là tiếp tuyến của đường tròn (O')

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai đường tròn (O; R) và (O'; R') tiếp xúc ngoài tại A (R > R'). Vẽ các (ảnh 1)

Ta có: DEBC tại K nên K là trung điểm DETứ giác BDCE có hai dường chéo BC, DE vuông góc nhau tại trung điểm mỗi đường

BDCE là hình thoi

Ta có: DBC^=BCE^ (so le trong ) (1)

BDA^=AIC^=900BA,CA là đường kính (2)

Từ (1), (2) suy ra ΔBDAΔCIA có:

DBC^=BDA^=BCE^+AIC^BAD^=CAI^ mà hai góc ở vị trí đối đỉnh và B, K, C thẳng hàng nên D, A, I thẳng hàng

ΔDIE vuông tại I có IK trung tuyến DK=KIKID^=KDI^(3)

KDI^=KCE^ (cùng phụ KEC^)4

Lại có KCE^=O'IC^ (ΔO'IC cân tại O') (5)

Từ (3), (4), (5)KID^=O'IC^

KID^+DIO'^=O'IC^+O'IA^KIO'^=AIC^=900

IO'KI là tiếp tuyến của (O')

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC vuông tại A (AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng:

a) ΔEBF cân

b) ΔHAF cân

c) HA là tiếp tuyến của (O)

Xem đáp án » 12/07/2024 7,758

Câu 2:

Giải hệ phương trình sau bằng phương pháp thế :

3x+4y=22xy=5

Xem đáp án » 12/07/2024 1,196

Câu 3:

Đoán nhận số nghiệm hệ phương trình sau, có giải thích
y=3x+2y=2x1

Xem đáp án » 11/07/2024 753

Câu 4:

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài AB, CD với A, C thuộc (O), B,DO'

Chứng minh rằng AB+CD=AC+BD

Xem đáp án » 12/07/2024 686

Câu 5:

Chứng tỏ rằng hệ phương trình 4xy=3mx+3y=5vô nghiệm với m = 12

Xem đáp án » 12/07/2024 477

Câu 6:

Chứng tỏ rằng hệ phương trình 4xy=3mx+3y=5có 1 nghiệm duy nhất với m = 3. Tìm nghiệm đó.

Xem đáp án » 12/07/2024 411
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua