Câu hỏi:

12/07/2024 1,535

Cho tam giác ABC có AB = 5, AC = 8, BC = 9. Tính (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng).

Số đo các góc A, B, C;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Xét tam giác ABC, có:

Áp đụng hệ quả của định lí cos ta được:

\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{5^2} + {8^2} - {9^2}}}{{2.5.8}} = \frac{1}{{10}} \Rightarrow \widehat A \approx 84,3^\circ ;\)

\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{5^2} + {9^2} - {8^2}}}{{2.5.9}} = \frac{7}{{15}} \Rightarrow \widehat B \approx 62,2^\circ ;\)

\(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2.BC.AC}} = \frac{{{8^2} + {9^2} - {5^2}}}{{2.8.9}} = \frac{5}{6} \Rightarrow \widehat C \approx 33,5^\circ ;\)

Vậy \(\widehat A \approx 84,3^\circ ,\widehat B \approx 62,2^\circ ,\widehat C \approx 33,5^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Xét tám giác vuông AHB, có:

AB2 = AH2 + HB2 (định lí pythagoras)

AB2 = 42 + 202

AB2 = 416

AB ≈ 20,4

Ta lại có: \(\tan \widehat {HAB} = \frac{{HB}}{{HA}}\) \(\tan \widehat {HAB} = \frac{{20}}{4} = 5 \Rightarrow \widehat {HAB} \approx 78,7^\circ \)

Ta có: AH BH và CB BH nên AH // CB

\(\widehat {HAB} = \widehat {ABC} \approx 78,7^\circ \) (hai góc so le trong)

Xét tam giác ABC có:

\(\widehat C = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 45^\circ - 78,7^\circ \)= 56,3°.

Áp dụng định lí sin trong tam giác ta được:

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)

\(BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{20,4.\sin 45^\circ }}{{\sin 56,3^\circ }} \approx 17,3\).

Vậy chiều cao của cây là 17,3 m.

Lời giải

Lời giải

Media VietJack

Xét tam giác ABC, có:

\[{\rm{cos}}\widehat {AHB} = \frac{{A{H^2} + B{H^2} - A{B^2}}}{{2.AH.BH}} = \frac{{{{150}^2} + {{250}^2} - {{300}^2}}}{{2.150.250}} = - \frac{1}{{15}}\]

\[\widehat {AHB} \approx 93,8^\circ \]

Ta lại có: \(\widehat {AHB} + \widehat {BHK} = 180^\circ \)

\(\widehat {BHK} = 180^\circ - \widehat {AHB} = 180^\circ - 93,8^\circ = 86,2^\circ \)

Xét tam giác BHK vuông tại K, có:

\(\widehat {HBK} + \widehat {BHK} = 90^\circ \) (hai góc phụ nhau)

\(\widehat {HBK} = 90^\circ - \widehat {BHK}\)

\(\widehat {HBK} \approx 90^\circ - 86,2^\circ = 3,8^\circ \).

Vậy độ dốc của cầu qua trụ khoảng 3,8°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay