Giải SBT Toán 10 CD Bài 2. Giải tam giác. Tính diện tích tam giác có đáp án
26 người thi tuần này 4.6 659 lượt thi 16 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Xét tam giác ABC, có:
BC2 = AB2 + AC2 – 2.AB.AC.cosA
⇔ BC2 = 6,52 + 8,52 – 2.6,5.8,5.cos125°
⇔ BC2 ≈ 177,9
⇔ BC ≈ 13,3.
Vậy BC ≈ 13,3.
Lời giải
Lời giải
Xét tam giác ABC, có:
\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{{6,5}^2} + {{13,3}^2} - {{8,5}^2}}}{{2.6,5.13,3}} \approx 0,8\)
⇒ \(\widehat B \approx 31,8^\circ \)
Ta lại có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc)
⇒ \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {125^\circ + 31,8^\circ } \right) = 23,2^\circ \).
Vậy \(\widehat B \approx 31,8^\circ \) và \(\widehat C \approx 23,2^\circ \).
Lời giải
Lời giải
Diện tích tam giác ABC là:
S = \(\frac{1}{2}.AB.AC.\sin A = \frac{1}{2}.6,5.8,5.\sin 125^\circ \approx 22,6\) (đvdt).
Vậy diện tích tam giác ABC là 22,6 đvdt.
Lời giải
Lời giải
Xét tam giác ABC, có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc)
⇒ \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {65^\circ + 45^\circ } \right) = 70^\circ \).
Áp dụng định lí sin trong tam giác ABC, ta được:
\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\)
⇔ \(\frac{{AB}}{{\sin 45^\circ }} = \frac{{AC}}{{\sin 65^\circ }} = \frac{{50}}{{\sin 70^\circ }} = 2R\)
⇒ \(\frac{{AB}}{{\sin 45^\circ }} = \frac{{50}}{{\sin 70^\circ }}\) ⇔ \(AB = \frac{{50.\sin 45^\circ }}{{\sin 70^\circ }} \approx 37,6\)
⇒ \(\frac{{AC}}{{\sin 65^\circ }} = \frac{{50}}{{\sin 70^\circ }}\) ⇔ \(AC = \frac{{50\sin 65^\circ }}{{\sin 70^\circ }} \approx 48,2\)
Vậy AB ≈ 37,6 vậy AC ≈ 48,2.
Lời giải
Lời giải
Áp đụng định lí sin trong tam giác ABC, ta được:
\(\frac{{BC}}{{\sin A}} = 2R \Leftrightarrow \frac{{50}}{{\sin 70^\circ }} = 2R \Leftrightarrow R = \frac{{50}}{{2\sin 70^\circ }} \approx 26,6\).
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là 26,6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
132 Đánh giá
50%
40%
0%
0%
0%