Câu hỏi:

13/07/2024 11,275

Quan sát cây cầu văng minh họa ở Hình 25.

Media VietJack

Media VietJack

Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H) là 150 m, độ dài dây văng dài nhất nối từ đỉnh trụ xuống mặt cầu (vị trí B) là 300m, khoảng cách từ chân dây văng dài nhất tới chân trụ trên mặt cầu là 250 m (Hình 26). Tính độ dốc của cầu qua trụ nói trên (làm tròn kết quả đến hàng phần mười theo đơn vị độ).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Xét tam giác ABC, có:

\[{\rm{cos}}\widehat {AHB} = \frac{{A{H^2} + B{H^2} - A{B^2}}}{{2.AH.BH}} = \frac{{{{150}^2} + {{250}^2} - {{300}^2}}}{{2.150.250}} = - \frac{1}{{15}}\]

\[\widehat {AHB} \approx 93,8^\circ \]

Ta lại có: \(\widehat {AHB} + \widehat {BHK} = 180^\circ \)

\(\widehat {BHK} = 180^\circ - \widehat {AHB} = 180^\circ - 93,8^\circ = 86,2^\circ \)

Xét tam giác BHK vuông tại K, có:

\(\widehat {HBK} + \widehat {BHK} = 90^\circ \) (hai góc phụ nhau)

\(\widehat {HBK} = 90^\circ - \widehat {BHK}\)

\(\widehat {HBK} \approx 90^\circ - 86,2^\circ = 3,8^\circ \).

Vậy độ dốc của cầu qua trụ khoảng 3,8°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Xét tám giác vuông AHB, có:

AB2 = AH2 + HB2 (định lí pythagoras)

AB2 = 42 + 202

AB2 = 416

AB ≈ 20,4

Ta lại có: \(\tan \widehat {HAB} = \frac{{HB}}{{HA}}\) \(\tan \widehat {HAB} = \frac{{20}}{4} = 5 \Rightarrow \widehat {HAB} \approx 78,7^\circ \)

Ta có: AH BH và CB BH nên AH // CB

\(\widehat {HAB} = \widehat {ABC} \approx 78,7^\circ \) (hai góc so le trong)

Xét tam giác ABC có:

\(\widehat C = 180^\circ - \widehat {BAC} - \widehat {ABC} = 180^\circ - 45^\circ - 78,7^\circ \)= 56,3°.

Áp dụng định lí sin trong tam giác ta được:

\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)

\(BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{20,4.\sin 45^\circ }}{{\sin 56,3^\circ }} \approx 17,3\).

Vậy chiều cao của cây là 17,3 m.

Lời giải

Lời giải

Xét tam giác ABC, có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc)

\(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {65^\circ + 45^\circ } \right) = 70^\circ \).

Áp dụng định lí sin trong tam giác ABC, ta được:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\)

\(\frac{{AB}}{{\sin 45^\circ }} = \frac{{AC}}{{\sin 65^\circ }} = \frac{{50}}{{\sin 70^\circ }} = 2R\)

\(\frac{{AB}}{{\sin 45^\circ }} = \frac{{50}}{{\sin 70^\circ }}\) \(AB = \frac{{50.\sin 45^\circ }}{{\sin 70^\circ }} \approx 37,6\)

\(\frac{{AC}}{{\sin 65^\circ }} = \frac{{50}}{{\sin 70^\circ }}\) \(AC = \frac{{50\sin 65^\circ }}{{\sin 70^\circ }} \approx 48,2\)

Vậy AB ≈ 37,6 vậy AC ≈ 48,2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP