Câu hỏi:
13/07/2024 3,089
Cho tứ giác ABCD, O là trung điểm của AB. Chứng minh: \(\overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {AC} + \overrightarrow {BD} .\)
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\overrightarrow {AC} + \overrightarrow {BD} \)
\( = \left( {\overrightarrow {AO} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {BO} + \overrightarrow {OD} } \right)\)
\( = \left( {\overrightarrow {AO} + \overrightarrow {BO} } \right) + \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right)\)
\( = \overrightarrow 0 + \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right)\)
\( = \overrightarrow {OC} + \overrightarrow {OD} \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là C
Ta có: \(\overrightarrow {MN} - \overrightarrow {NP} = \overrightarrow {MN} + \overrightarrow {PN} = \overrightarrow {MN} + \overrightarrow {MK} = \overrightarrow {MH} \ne \overrightarrow {MP} \) (H, K là điểm thỏa mãn MKHN là hình bình hành). Do đó A sai.
Ta có: \( - \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {NM} + \overrightarrow {NP} = \overrightarrow {NT} \ne \overrightarrow {MP} \)(T là điểm MNPT là hình bình hành). Do đó B sai
Ta có: \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \) (quy tắc ba điểm). Do đó C đúng.
Ta có: \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \ne - \overrightarrow {MP} \). Do đó D sai.
Lời giải
Lời giải
Đáp án đúng là B
Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
⇔ \(\overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} \)
⇔ \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {AG} \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.