Câu hỏi:

06/08/2022 269

\(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Lấy điểm D là điểm thỏa mãn ABDC là hình chữ nhật nên AD = BC (tính chất hình hình chữ nhật).

Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \) (quy tắc hình bình hành)

\(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right| = \sqrt {41} a\).

Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \sqrt {41} a.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là:

A. \(\overrightarrow {GA} + \overrightarrow {GB} = \overrightarrow {GC} \).

B. \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {AG} \).

C. \(\overrightarrow {GC} + \overrightarrow {GB} = \overrightarrow {GA} \).

D. \(\overrightarrow {GA} + \overrightarrow {GB} - \overrightarrow {GC} = \overrightarrow 0 \).

Xem đáp án » 13/07/2024 7,394

Câu 2:

Cho ba điểm M, N, P phân biệt. Phát biểu nào sau đây là đúng?

A. \(\overrightarrow {MN} - \overrightarrow {NP} = \overrightarrow {MP} \).

B. \( - \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \).

C. \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \).

D. \(\overrightarrow {MN} + \overrightarrow {NP} = - \overrightarrow {MP} \).

Xem đáp án » 13/07/2024 7,216

Câu 3:

Cho tam giác ABC thỏa mãn \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\). Chứng minh tam giác ABC vuông tại A.

Xem đáp án » 13/07/2024 5,772

Câu 4:

Cho tam giác ABC. Tìm tập hợp các điểm M trong mặt phẳng thỏa mãn \(\left| {\overrightarrow {AB} + \overrightarrow {BM} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AM} } \right|\).

Xem đáp án » 13/07/2024 5,606

Câu 5:

Cho tam giác ABC vuông tại A, AB = 4a, AC = 5a. Tính:

\(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\);

Xem đáp án » 13/07/2024 4,300

Câu 6:

Cho tam giác nhọn ABC có các cạnh đôi một khác nhau. Gọi H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp tam giác, D là điểm đối xứng với H qua O. Chứng minh rằng: \(\overrightarrow {HA} + \overrightarrow {HB} + \overrightarrow {HC} = \overrightarrow {HD} \).

Xem đáp án » 13/07/2024 4,203

Câu 7:

Cho tứ giác ABCD là hình bình hành. Khẳng định nào sau đây đúng?

A. \(\overrightarrow {BA} + \overrightarrow {DA} = \overrightarrow {CA} \).

B. \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AD} \).

C. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {CA} \).

D. \(\overrightarrow {AB} + \overrightarrow {BC} = - \overrightarrow {AC} \).

Xem đáp án » 13/07/2024 3,769

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store