Câu hỏi:

06/08/2022 518

\(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi D là điểm thỏa mãn ABDC là hình bình hành, M là trung điểm của BC.

Khi đó: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)

\(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right|\).

Xét tam giác ABC, có AM là đường trung tuyến nên AM là đường cao

AM = \(\frac{{a\sqrt 3 }}{2}\)

AD = 2AM = 2.\(\frac{{a\sqrt 3 }}{2} = a\sqrt 3 \).

\(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = a\sqrt 3 \).

Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là C

Ta có: \(\overrightarrow {MN} - \overrightarrow {NP} = \overrightarrow {MN} + \overrightarrow {PN} = \overrightarrow {MN} + \overrightarrow {MK} = \overrightarrow {MH} \ne \overrightarrow {MP} \) (H, K là điểm thỏa mãn MKHN là hình bình hành). Do đó A sai.

Ta có: \( - \overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {NM} + \overrightarrow {NP} = \overrightarrow {NT} \ne \overrightarrow {MP} \)(T là điểm MNPT là hình bình hành). Do đó B sai

Ta có: \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \) (quy tắc ba điểm). Do đó C đúng.

Ta có: \(\overrightarrow {MN} + \overrightarrow {NP} = \overrightarrow {MP} \ne - \overrightarrow {MP} \). Do đó D sai.

Lời giải

 

Lời giải

Đáp án đúng là B

Điều kiện cần và đủ để G là trọng tâm của tam giác ABC là \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

\(\overrightarrow {GB} + \overrightarrow {GC} = - \overrightarrow {GA} \)

\(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {AG} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP