Câu hỏi:
18/08/2022 503Cho ∆ABC có . Các đường phân giác xuất phát từ đỉnh B và C cắt nhau tại O. Vẽ tia Bx sao cho BA là tia phân giác của . Vẽ tia Cy sao cho CA là tia phân giác của . Hai tia Bx và CA cắt nhau tại E, hai tia Cy và BA cắt nhau tại D. Hỏi ∆ODE là tam giác gì?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
∆ABC có hai đường phân giác xuất phát từ đỉnh B, C cắt nhau tại O.
Suy ra AO là đường phân giác thứ ba của ∆ABC.
Do đó .
Ta có (hai góc kề bù).
Suy ra .
Tương tự ta có .
Xét ∆BAE và ∆BAO, có:
BA là cạnh chung.
.
(do BA là phân giác của ).
Do đó ∆BAE = ∆BAO (g.c.g).
Suy ra BE = BO (cặp cạnh tương ứng).
Chứng minh tương tự, ta được CD = CO.
Xét ∆BDE và ∆BDO, có:
BD là cạnh chung.
BO = BE (chứng minh trên).
(do BD là phân giác của ).
Do đó ∆BDE = ∆BDO (c.g.c).
Suy ra DE = DO (cặp cạnh tương ứng).
Chứng minh tương tự, ta được DE = OE.
Suy ra DE = OE = DO.
Vì vậy ∆ODE đều.
Vậy ta chọn đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AH vừa là đường cao, vừa là đường phân giác. Hỏi ∆ABC chắc chắn là tam giác gì?
Câu 2:
Cho ∆MNP có , . Các đường phân giác NE, PF cắt nhau ở H. Số đo bằng:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hình vẽ bên:
Biết CI, BI là hai đường phân giác của ∆ABC. Tìm x.
Câu 7:
Cho ∆ABC cân tại A. Gọi CP, BQ là các đường phân giác của ∆ABC (P ∈ AB, Q ∈ AC). Gọi O là giao điểm của CP và BQ. Cho các khẳng định sau:
(I) ∆OBC cân;
(II) O cách đều ba cạnh AB, AC, BC;
(III) AO là đường trung trực của đoạn thẳng BC;
(IV) CP = BQ;
(V) ∆APQ cân tại P.
Số khẳng định đúng là:
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Bài tập: Tập hợp Q các số hữu tỉ có đáp án
Đề thi Học kì 1 Toán 7 Cánh diều có đáp án (Đề 1)
10 Bài tập Nhận biết và chứng minh tam giác cân, tam giác đều (có lời giải)
Đề kiểm tra 15 phút Toán 7 Chương 3 Hình học có đáp án (phần Qhgcytttg - Trắc nghiệm 1)
Đề thi Toán lớp 7 Học kì 1 có đáp án (Đề 1)
Đề thi Học kì 1 Toán 7 CTST có đáp án (Đề 1)
Đề thi Toán lớp 7 Giữa kì 1 có đáp án (Đề 1)
về câu hỏi!