Câu hỏi:

18/08/2022 2,158

Cho ∆ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP. Giao điểm của ba đường trung trực của ∆MNP là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

Ta có AC = BC (do ∆ABC đều) và CP = BN (giả thiết).

Suy ra AC – CP = BC – BN.

Do đó AP = CN.

Xét ∆MAP và ∆PCN, có:

AM = CP (giả thiết).

MAP^=PCN^=60° (do ∆ABC đều).

AP = CN (chứng minh trên).

Do đó ∆MAP = ∆PCN (c.g.c)

Suy ra MP = PN (cặp cạnh tương ứng)   (1).

Chứng minh tương tự, ta được MN = PN  (2).

Từ (1), (2), ta suy ra MP = MN = PN.

Do đó ∆MNP đều.

Gọi O là giao điểm của các đường trung trực của ∆ABC

Khi đó OA = OB = OC (tính chất ba đường trung trực của tam giác)

Xét DBOA và DBOC có:

BA = BC (do ∆ABC đều),

BO là cạnh chung,

OA = OC (chứng minh trên)

Do đó DBOA = DBOC (c.c.c)

Suy ra ABO^=CBO^ (hai góc tương ứng)

Ta suy ra BO cũng là đường phân giác của ∆ABC.

Do đó OBM^=OBN^=60°:2=30°.

Chứng minh tương tự, ta được:

OAM^=OAP^=30° và OCN^=OCP^=30°.

Xét ∆MAO và ∆NBO, có:

OA = OB (chứng minh trên).

OAM^=OBN^ (= 30°).

AM = BN (giả thiết).

Do đó ∆MAO = ∆NBO (c.g.c)

Suy ra MO = NO (cặp cạnh tương ứng)  (3).

Chứng minh tương tự, ta được NO = PO   (4).

Từ (3), (4), ta suy ra OM = ON = OP.

Do đó O là giao điểm của ba đường trung trực của ∆MNP.

Vì vậy giao điểm của ba đường trung trực của ∆MNP là giao điểm của ba đường trung trực của ∆ABC.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có ba góc nhọn, O là giao điểm hai đường trung trực của AB và AC. Trên tia đối của tia OB, lấy điểm D sao cho OB = OD. Biết ABC^=70°. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,859

Câu 2:

Cho ∆ABC, gọi I là giao điểm của hai đường trung trực của hai cạnh AB và AC. Kết quả nào dưới đây đúng?

Xem đáp án » 18/08/2022 1,821

Câu 3:

Cho ∆ABC cân tại A. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = AE, CD cắt BE tại O. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,593

Câu 4:

Cho ∆ABC có M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại O. Số đo OMB^ bằng:

Xem đáp án » 18/08/2022 1,314

Câu 5:

Cho ∆ABC vuông tại A. Trên cạnh BC lấy điểm M bất kì. Vẽ các điểm D và E sao cho AB là đường trung trực của MD và AC là đường trung trực của ME. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 18/08/2022 1,153

Câu 6:

Cho ∆ABC cân tại A, đường trung tuyến AM. Đường trung trực của AB cắt AM ở O. Biết OA = 4 cm. Tính OB và OC.

Xem đáp án » 18/08/2022 1,146

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store