Câu hỏi:
18/08/2022 2,780Cho ∆ABC có ba góc nhọn, O là giao điểm hai đường trung trực của AB và AC. Trên tia đối của tia OB, lấy điểm D sao cho OB = OD. Biết . Khẳng định nào sau đây đúng nhất?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì O thuộc đường trung trực của cạnh AB nên OA = OB.
Suy ra ∆OAB cân tại O.
Do đó (tính chất tam giác cân)
∆OAB có: (tổng ba góc trong một tam giác)
Suy ra .
Do đó .
Chứng minh tương tự, ta được .
Do đó
(do hai góc kề bù).
= 90°.
Suy ra ∆ABD vuông tại A.
Do đó đáp án A đúng.
Chứng minh tương tự như trên, ta được ∆CBD vuông tại C.
Do đó đáp án B đúng.
∆ABD vuông tại A: (trong tam giác vuông, hai góc nhọn phụ nhau)
Suy ra hay .
Tương tự, ta được .
Do đó
= 180° – 70° = 110°.
Suy ra .
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có AC = BC (do ∆ABC đều) và CP = BN (giả thiết).
Suy ra AC – CP = BC – BN.
Do đó AP = CN.
Xét ∆MAP và ∆PCN, có:
AM = CP (giả thiết).
(do ∆ABC đều).
AP = CN (chứng minh trên).
Do đó ∆MAP = ∆PCN (c.g.c)
Suy ra MP = PN (cặp cạnh tương ứng) (1).
Chứng minh tương tự, ta được MN = PN (2).
Từ (1), (2), ta suy ra MP = MN = PN.
Do đó ∆MNP đều.
Gọi O là giao điểm của các đường trung trực của ∆ABC
Khi đó OA = OB = OC (tính chất ba đường trung trực của tam giác)
Xét DBOA và DBOC có:
BA = BC (do ∆ABC đều),
BO là cạnh chung,
OA = OC (chứng minh trên)
Do đó DBOA = DBOC (c.c.c)
Suy ra (hai góc tương ứng)
Ta suy ra BO cũng là đường phân giác của ∆ABC.
Do đó .
Chứng minh tương tự, ta được:
và .
Xét ∆MAO và ∆NBO, có:
OA = OB (chứng minh trên).
(= 30°).
AM = BN (giả thiết).
Do đó ∆MAO = ∆NBO (c.g.c)
Suy ra MO = NO (cặp cạnh tương ứng) (3).
Chứng minh tương tự, ta được NO = PO (4).
Từ (3), (4), ta suy ra OM = ON = OP.
Do đó O là giao điểm của ba đường trung trực của ∆MNP.
Vì vậy giao điểm của ba đường trung trực của ∆MNP là giao điểm của ba đường trung trực của ∆ABC.
Vậy ta chọn đáp án D.
Lời giải
Đáp án đúng là: D
Ta có AB = AC (do ∆ABC cân tại A) và AD = AE (giả thiết).
Suy ra AB – AD = AC – AE.
Do đó BD = CE.
Xét ∆EBC và ∆DCB, có:
BC là cạnh chung.
(do ∆ABC cân tại A).
BD = CE (chứng minh trên).
Do đó ∆EBC = ∆DCB (c.g.c)
Suy ra (cặp góc tương ứng).
Suy ra ∆BOC cân tại O.
Do đó đáp án A đúng.
Ta có ∆BOC cân tại O.
Suy ra OB = OC.
Mà AB = AC (chứng minh trên)
Do đó AO là đường trung trực của cạnh BC (1).
Xét tam giác ABM và tam giác ACM có:
AB = AC (chứng minh trên),
(do ∆ABC cân tại A),
BM = CM (do M là trung điểm BC)
Do đó ∆ABM = ∆ACM (c.g.c)
Suy ra (hai góc tương ứng)
Mà (hai góc kề bù)
Do đó
Suy ra AM ⊥ BC tại trung điểm M của BC
Khi đó AM là đường trung trực của BC (2)
Từ (1), (2), ta suy ra A, O, M thẳng hàng.
Do đó đáp án B đúng.
Ta có O thuộc AM (chứng minh trên).
Mà O là giao điểm của BE và CD.
Suy ra ba đường thẳng AM, BE, CD đồng quy tại điểm O.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 02
Bộ 15 đề thi Học kì 2 Toán 7 có đáp án (Mới nhất) - đề 2
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án