Câu hỏi:
18/08/2022 501
Cho ∆ABC cân tại A. Gọi H là trực tâm của ∆ABC và . Xét hai khẳng định sau:
(I) ∆ABC là tam giác vuông cân;
(II) ∆ABC là tam giác đều.
Chọn câu trả lời đúng.
Cho ∆ABC cân tại A. Gọi H là trực tâm của ∆ABC và . Xét hai khẳng định sau:
(I) ∆ABC là tam giác vuông cân;
(II) ∆ABC là tam giác đều.
Chọn câu trả lời đúng.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Vì H là trực tâm của ∆ABC nên AH ⊥ BC.
Gọi I là giao điểm của AH và BC.
Suy ra AI ⊥ BC.
Xét ∆ABI và ∆ACI, có:
AI là cạnh chung,
,
AB = AC (do ∆ABC cân tại A).
Do đó ∆ABI = ∆ACI (cạnh huyền – cạnh góc vuông).
Suy ra (cặp góc tương ứng)
Hay .
Do đó .
Mà ∆ABC cân tại A.
Suy ra ∆ABC là tam giác đều.
Tam giác đều có cả ba góc đều bằng 60° nên tam giác đều không thể là tam giác vuông cân được.
Vì vậy (I) sai, (II) đúng.
Vậy ta chọn đáp án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
∆AKC có CH, KE là hai đường cao.
Mà CH cắt KE tại D.
Suy ra D là trực tâm của ∆AKC.
Do đó AD ⊥ KC.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: D
• ∆ABC có AM là đường trung tuyến.
Suy ra M là trung điểm BC.
Xét ∆ABM và ∆ACM, có:
AM là cạnh chung,
AB = AC (do ∆ABC cân tại A),
BM = CM (do M là trung điểm BC),
Do đó ∆ABM = ∆ACM (c.c.c).
Suy ra (cặp góc tương ứng).
Mà (hai góc kề bù).
Vì vậy .
Do đó AM ⊥ BC.
Suy ra AM là đường cao của ∆ABC.
∆ABC có AM, BH là hai đường cao.
Mà AM cắt BH ở K.
Suy ra K là trực tâm của ∆ABC.
Do đó đáp án A đúng.
• Vì K là trực tâm của ∆ABC nên CK ⊥ AB.
Do đó đáp án B đúng.
• ∆ABC cân tại A nên (tính chất tam giác cân)
Mà (định lí tổng ba góc trong một tam giác)
Do đó
Ta có (cùng phụ với ).
Vì K thuộc AM nên ba điểm A, K, M thẳng hàng.
Suy ra (hai góc kề bù).
Do đó .
Vì vậy đáp án C sai.
Vậy ta chọn đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.