Biết rằng ABC và MNP là tam giác vuông tại đỉnh A, M và AB = PM, . Câu nào dưới đây là đúng?
A. ∆ABC = ∆MPN;
B. ∆ABC = ∆MNP;
C. ∆ABC = ∆PMN;
D. ∆ABC = ∆NMP.
Biết rằng ABC và MNP là tam giác vuông tại đỉnh A, M và AB = PM, . Câu nào dưới đây là đúng?
A. ∆ABC = ∆MPN;
B. ∆ABC = ∆MNP;
C. ∆ABC = ∆PMN;
D. ∆ABC = ∆NMP.
Quảng cáo
Trả lời:
Đáp án đúng là A
Xét hai tam giác ABC và MPN, ta có:
AB = MP (theo giả thiết)
(vì )
Vậy ∆ABC = ∆MPN (cạnh góc vuông – góc nhọn).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thấy hai tam giác ADC và BCD lần lượt vuông góc tại các đỉnh A, B và có:
DC là cạnh chung
AD = BC (theo giả thiết)
Vậy ∆ADC = ∆BCD (cạnh huyền – cạnh góc vuông). Từ đây suy ra AC = BD.
Hai tam giác BAD và ABC có: AD = BC (theo giả thiết), AB là cạnh chung, BD = AC (chứng minh trên). Vậy ∆BAD = ∆ABC (c – c – c), suy ra .
Lời giải
a) ∆ACB = ∆ACD (cạnh góc vuông – góc nhọn) vì hai tam giác vuông tại đỉnh C, Ac là cạnh chung, .
b) ∆EGH = ∆FHG (cạnh huyền – cạnh góc vuông) vì hai tam giác lần lượt vuông tại đỉnh E và F, HG là cạnh huyền chung, HE = GF.
c) ∆QMK = ∆NMP (cạnh huyền – góc nhọn) vì hai tam giác vuông tại đỉnh M, KQ = PN, .
d) ∆SVT = ∆TUS (hai cạnh góc vuông) vì hai tam giác lần lượt vuông tại đỉnh S và T, SV = TU, ST là cạnh chung.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



