Câu hỏi:

12/07/2024 962

Cho hình vẽ dưới đây. Biết AB = A’B’, HB = H’B’, BC = B’C’. Chứng minh rằng AC = A’C’.

Cho hình vẽ dưới đây. Biết AB = A’B’, HB = H’B’, BC = B’C’. Chứng minh rằng AC = A’C’. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hai tam giác AHB và A’H’B’ lần lượt vuông tại H, H’ và có:

AB = A’B’, HB = H’B’ (theo giả thiết).

Vậy ∆AHB = ∆A’H’B’ (cạnh huyền – cạnh góc vuông). Do đó AH = A’H’.

Hai tam giác AHC và A’H’C’ lần lượt vuông tại H, H’ và có:

AH = A’H’ (theo chứng minh trên);

HC = HB + BC = H’B’ + B’C’ = H’C’ (theo giả thiết).

Vậy ∆AHC = ∆A’H’C’ (Hai cạnh góc vuông). Từ đó suy ra AC = A’C’.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy hai tam giác ADC và BCD lần lượt vuông góc tại các đỉnh A, B và có:

DC là cạnh chung

AD = BC (theo giả thiết)

Vậy ∆ADC = ∆BCD (cạnh huyền – cạnh góc vuông). Từ đây suy ra AC = BD.

Hai tam giác BAD và ABC có: AD = BC (theo giả thiết), AB là cạnh chung, BD = AC (chứng minh trên). Vậy ∆BAD = ∆ABC (c – c – c), suy ra BAD^=ABC^.

Lời giải

a) ∆ACB = ∆ACD (cạnh góc vuông – góc nhọn) vì hai tam giác vuông tại đỉnh C, Ac là cạnh chung, CAB^=CAD^.

b) ∆EGH = ∆FHG (cạnh huyền – cạnh góc vuông) vì hai tam giác lần lượt vuông tại đỉnh E và F, HG là cạnh huyền chung, HE = GF.

c) ∆QMK = ∆NMP (cạnh huyền – góc nhọn) vì hai tam giác vuông tại đỉnh M, KQ = PN, MKQ^=MPN^.

d) ∆SVT = ∆TUS (hai cạnh góc vuông) vì hai tam giác lần lượt vuông tại đỉnh S và T, SV = TU, ST là cạnh chung.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP