Câu hỏi:

12/07/2024 3,409

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b)

b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A. (ảnh 1)

GT

∆ABC, M BC, MB = MC, MAB^=MAC^.

KL

∆ABC cân tại A

 

Kéo dài AM một đoạn MD sao cho MD = MA.

Hai tam giác MAB và MDC có:

MB = MC (theo giả thiết).

AMB^=DMB^ (hai góc đối đỉnh).

MA = MD (theo cách dựng).

Do đó ∆MAB = ∆MDC  (c – g – c). Do đó AB = DC (1).

Mặt khác ∆ACD có CAD^=CAM^=BAM^=CDM^=CDA^   

Vậy tam giác ∆ACD cân tại C và do đó AC = CD (2).

Từ (1) và (2) suy ra AB = AC, hay tam giác ABC cân tại A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.

a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.

Xem đáp án » 12/07/2024 5,799

Câu 2:

Đường thẳng d là đường trung trực của đoạn thẳng AB khi và chỉ khi:

A. d đi qua trung điểm của AB;

B. d là trục đối xứng của đoạn thẳng AB;

C. d vuông góc với AB;

D. d vuông góc với AB tại trung điểm của AB.

Xem đáp án » 12/07/2024 3,459

Câu 3:

c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân.

Xem đáp án » 12/07/2024 2,198

Câu 4:

Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.

Xem đáp án » 12/07/2024 2,051

Câu 5:

Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.

Hãy giải thích các khẳng định sau:

a) Tam giác vuông cân thì cân tại đỉnh góc vuông;

Xem đáp án » 12/07/2024 1,008

Câu 6:

Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh tam giác ABC cân tại A.

Xem đáp án » 12/07/2024 923