Câu hỏi:
12/07/2024 1,617b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b)
GT |
∆ABC, M ∈ BC, MB = MC, . |
KL |
∆ABC cân tại A |
Kéo dài AM một đoạn MD sao cho MD = MA.
Hai tam giác MAB và MDC có:
MB = MC (theo giả thiết).
(hai góc đối đỉnh).
MA = MD (theo cách dựng).
Do đó ∆MAB = ∆MDC (c – g – c). Do đó AB = DC (1).
Mặt khác ∆ACD có
Vậy tam giác ∆ACD cân tại C và do đó AC = CD (2).
Từ (1) và (2) suy ra AB = AC, hay tam giác ABC cân tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC và M là trung điểm của đoạn thẳng BC.
a) Giả sử AM vuông góc với BC. Chứng minh rằng tam giác ABC cân tại A.
Câu 2:
Cho tam giác ABC cân tại A và M là trung điểm của đoạn thẳng BC. Chứng minh AM vuông góc với BC và AM là tia phân giác của góc BAC.
Câu 3:
Đường thẳng d là đường trung trực của đoạn thẳng AB khi và chỉ khi:
A. d đi qua trung điểm của AB;
B. d là trục đối xứng của đoạn thẳng AB;
C. d vuông góc với AB;
D. d vuông góc với AB tại trung điểm của AB.
Câu 4:
c) Tam giác vuông có một góc nhọn bằng 45o là tam giác vuông cân.
Câu 5:
Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.
Hãy giải thích các khẳng định sau:
a) Tam giác vuông cân thì cân tại đỉnh góc vuông;
Câu 6:
Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh tam giác ABC cân tại A.
về câu hỏi!