Câu hỏi:

12/07/2024 1,078

Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD là phân giác góc BAC. Chứng minh tam giác ABC cân tại A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

∆ABC, D BC, AD BC, BAD^=CAD^.

KL

∆ABC cân tại A

Cho tam giác ABC và điểm D nằm trên cạnh BC sao cho AD vuông góc với BC và AD (ảnh 1)

Hai tam giác ADB và ADC cùng vuông tại D và có:

AD là cạnh chung;

BAD^=CAD^ (theo giả thiết).

Vậy ∆ADB = ∆ADC (cạnh góc vuông – góc nhọn). Do đó AB = AC (hai cạnh tương ứng), hay ∆ABC cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

GT

∆ABC, M BC, MB = MC, AM BC.

KL

∆ABC cân tại A

Cho tam giác ABC và M là trung điểm của đoạn thẳng BC. a) Giả sử AM vuông góc  (ảnh 1)

 

Xét hai tam giác ABM và ACM vuông tại đỉnh M và có:

MB = MC (chứng minh trên).

AM là cạnh chung.

Vậy ∆ABM = ∆ACM (hai cạnh góc vuông).

Do đó AB = AC (2 cạnh tương ứng) hay tam giác ABC cân tại A.

Lời giải

Đáp án đúng là D

Đường thẳng d là đường trung trực của đoạn thẳng AB khi và chỉ khi d vuông góc với AB tại trung điểm của AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP