Câu hỏi:

12/07/2024 3,115

Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

∆MBC, M^=90°,B^=60°, MA = MB, A thuộc tia đối của tia MB.

KL

∆ABC đều.

 

Ta thấy hai tam giác MBC và MAC vuông tại M và có:

MB = MA (theo giả thiết);

MC là cạnh chung.

Vậy ∆MBC = ∆MAC (hai cạnh góc vuông). Do đó A^=B^=60°.

Suy ra C^=180°A^B^=180°60°60°=60°.

Vậy ABC là tam giác có ba góc bằng nhau nên đây là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi O là giao điểm của đường thẳng BN và CM. Chứng minh rằng O nằm trên đường trung trực của đoạn thẳng BC.

Xem đáp án » 12/07/2024 1,183

Câu 2:

b) ∆ACD = ∆BDC.  

Xem đáp án » 12/07/2024 694

Câu 3:

b) ∆AMN = ∆BNM.

Xem đáp án » 12/07/2024 652

Câu 4:

Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM. Chứng minh rằng:

a) ∆OAN = ∆OBM;

Xem đáp án » 20/08/2022 600

Câu 5:

Cho các điểm A, B, C, D như hình vẽ dưới đây. Hãy tính các độ dài a, b và số đo góc x, y.

Xem đáp án » 12/07/2024 511

Câu 6:

Cho hình chữ nhật ABCD và cho M là trung điểm của đoạn thẳng AB như hình vẽ dưới đây. Chứng minh rằng M nằm trên đường trung trực của CD.

Xem đáp án » 12/07/2024 398

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store