Cho tam giác MBC vuông tại M có  Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
                                    
                                                                                                                        Cho tam giác MBC vuông tại M có Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Câu hỏi trong đề: Giải VTH Toán 7 Luyện tập chung trang 86 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    | GT | ∆MBC, , MA = MB, A thuộc tia đối của tia MB. | 
| KL | ∆ABC đều. | 
Ta thấy hai tam giác MBC và MAC vuông tại M và có:
MB = MA (theo giả thiết);
MC là cạnh chung.
Vậy ∆MBC = ∆MAC (hai cạnh góc vuông). Do đó .
Suy ra .
Vậy ABC là tam giác có ba góc bằng nhau nên đây là tam giác đều.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
| GT | ∆ABC cân tại A, M ∈ AC, N ∈ AC, AM = MB, AN = NC, BN ∩ CM = O. | 
| KL | O thuộc trung trực của BC. | 

Hai tam giác ABN và ACM có:
AB = AC (∆ABC cân tại A);
(góc chung);
(∆ABC cân tại A).
Vậy ∆ABN = ∆ACM (c – g – c). Do đó suy ra .
Lời giải
b) Hai tam giác ACD và BDC có:
AC = BD (chứng minh trên).
CD là cạnh chung;
AD = AO + OD = BO + OC = BC.
Vậy ∆ACD = ∆BDC (c – c – c).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo