Câu hỏi:
12/07/2024 359Cho hình chữ nhật ABCD và cho M là trung điểm của đoạn thẳng AB như hình vẽ dưới đây. Chứng minh rằng M nằm trên đường trung trực của CD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hai tam giác MAD và MBC lần lượt vuông tại A và có:
MA = MB (M là trung điểm AB);
DA = BC (hai cạnh đối của hình chữ nhật).
Vậy ∆MAD = ∆MBC (hai cạnh góc vuông)
Do đó MD = MC. Vậy M cách đều D và C của đoạn thẳng BC. Do đó M nằm trên trung trực của đoạn thẳng CD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác MBC vuông tại M có Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.
Câu 2:
Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi O là giao điểm của đường thẳng BN và CM. Chứng minh rằng O nằm trên đường trung trực của đoạn thẳng BC.
Câu 5:
Cho góc xOy. Trên tia Ox lấy hai điểm A, M; trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM. Chứng minh rằng:
a) ∆OAN = ∆OBM;
Câu 6:
Cho các điểm A, B, C, D như hình vẽ dưới đây. Hãy tính các độ dài a, b và số đo góc x, y.
về câu hỏi!