Câu hỏi:

29/08/2022 249

Cho hệ phương trình x+y=mx2+y2=m2+6 (m là tham số).

Hãy tìm các giá trị của m để hệ phương trình có nghiệm (x;y) sao cho biểu thức A=xy+2x+y đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải chi tiết

Nhận xét: x+y=mx2+y2=m2+6 là hệ phương trình đối xứng loại 1.

Đặt S=x+y; P=xy. Điều kiện: S24P.

x2+y2=x+y22xy=S22P.

Ta có hệ: S=mS22P=m2+6S=mP=m23

Hệ phương trình có nghiệm x;y khi và chỉ khi

S24Pm24m2123m212m242m2.

Ta có: A=xy+2x+y=m23+2m=m2+2m+14=m+124.

Vì 2m21m+130m+129

4A5.

Giá trị nhỏ nhất của A là -4  đạt được khi m+1=0m=1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

x2+4y2=5x+2y5+4xy=27x2+2y2=5x+2y5+2.x.2y=27x+2y222xy=5x+2y5+2.2xy=27

 

Đặt a=x+2;b=2xy (điều kiện: a24b) ta được

          a22b=5a5+2b=27a=3;b=2.

x và 2y là nghiệm của hai phương trình bậc hai: X23X+2=0X=1X=2.

Vậy nghiệm của hệ phương trình là 1;1,2;12.

Lời giải

Giải chi tiết

Trừ từng vế của hai phương trình ta được:

x3y3+3x3y=0xyx2+y2+xy+3=0                                xyx+y22+3y24+3=0y=x

Với y=x thay vào (1) ta được: x3+x=0x=0.

Vậy nghiệm của hệ phương trình là (0;0 ).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP