Câu hỏi:

12/07/2024 392

Cho tam giác ABC nội tiếp trong đường tròn (O). Trên các cung nhỏ AB và AC lần lượt lấy các điểm I và K sao cho  IA=AK. Dây IK cắt các cạnh AB, AC lần lượt tại D và E.

a) Chứng minh rằng  ADK^=ACB^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta thấy  ADK^ là góc có đỉnh D nằm trong đường tròn  O nên:

     ADK^=12sđAK+sđIB=12sđAI+sđIB=12sđAB.       (1)

Mà  ACB^ là góc nội tiếp chắn cung  AB nên:  ACB^=12sđAB.  (2)

Từ (1) và (2) suy ra  ADK^=ACB^.

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Tứ giác DECB là hình thang cân

 DECB là hình thang và  C^=B^

 DE//BCC^=B^ADE^=ABC^C^=B^C^=B^ΔABC cân tại A.

Vậy tam giác ABC phải là tam giác cân tại A thì tứ giác DECB là hình thang cân.

Lời giải

a) Gọi N là giao điểm thứ hai của AB với đường tròn (T).

Do AD là phân giác của  BAC^ND=MD.

Ta có  MBC^=12sđDMsđDP=12sđDNsđDP=12sđNP=EAN^.

 MBC^=EAB^ (đpcm).

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP