Câu hỏi:

31/08/2022 242

b) Các tam giác EAI và DAI là những tam giác cân.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có  EAI^=EAB^+BAI^; AIE^=ICA^+IAC^ (góc ngoài của tam giác AIC).  (4)

 EAB^=ECA^ (hai góc nội tiếp cùng chắn hai cung bằng nhau là  EB,EA).      (5)

Vì I giao điểm hai đường phân giác của  ΔABC, suy ra AI là đường phân giác của góc  BAC^

 BAI^=CAI^.                                                                           (6)

Từ (4), (5) và (6) suy ra  EAI^=EIA^ΔEAI cân tại E.

Chứng minh hoàn toàn tương tự, ta cũng có  IAD^=AID^ΔAID cân tại D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tam giác ABC phải có thêm điều kiện gì thì tứ giác DECB là hình thang cân.

Xem đáp án » 12/07/2024 1,254

Câu 2:

Trong tam giác ABC, đường phân giác của  BAC^ cắt cạnh BC tại D. Giả sử (T) là đường tròn tiếp xúc với BC tại  và đi qua điểm D. Gọi M là giao điểm thứ hai của (T) và AC, P là giao điểm thứ hai của (T) và BM, E là giao điểm của AP và BC.

a) Chứng minh rằng  EAB^=MBC^.

Xem đáp án » 12/07/2024 1,073

Câu 3:

Cho bốn điểm A,D,C,B theo thứ tự đó nằm trên đường tròn tâm O đường kính AB=2R. Gọi E và F theo thứ tự là hình chiếu vuông góc của A,B trên đường thẳng CDA. Tia AD cắt tia BC tại I. Biết  AE+BF=R3.

a) Tính số đo  AIB^.

Xem đáp án » 12/07/2024 405

Câu 4:

b) Trên cung nhỏ CD lấy điểm K. Gọi giao điểm của KA,KB với DC lần lượt là M và N. Tìm giá trị lớn nhất của MN khi K di động trên cung nhỏ CD.

Xem đáp án » 12/07/2024 385

Câu 5:

b) Chứng minh hệ thức  BE2=EP.EA.

 

Xem đáp án » 31/08/2022 367

Câu 6:

c) Tứ giác AMIN là hình thoi.

Xem đáp án » 31/08/2022 334

Câu 7:

Cho tam giác ABC nội tiếp trong đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. Chứng minh rằng:

a) Tam giác AMN là tam giác cân.

Xem đáp án » 12/07/2024 333

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL