Câu hỏi:
13/07/2024 354Cho đường tròn đường kính AB, các điểm C , D nằm trên đường tròn đó sao cho C , D nằm khác phía đối với đường thẳng AB, đồng thời AD > AC. Gọi điểm chính giữa của các cung nhỏ AC, AD lần lượt là M , N; giao điểm của MD với CN là K; giao điểm của MN và AC, AD lần lượt là H , I.
a) Chứng minh ACN = DMN. Từ đó suy ra tứ giác MCKH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì N là điểm chính giữa của cung AD => AN = DN.
=> ACN = DMN (hai góc nội tiếp chắn hai cung bằng nhau AN, DN).
Khi đó tứ giác CMHK có hai đỉnh M và C cùng nhìn cạnh HK dưới một góc bằng nhau nên CMHK là tứ giác nội tiếp.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho IEM = 90 (I và M không trùng với các đỉnh của hình vuông).
a) Chứng minh rằng BIEM là tứ giác nội tiếp.
Câu 3:
b) Chứng minh rằng các điểm M, N, P, Q, C nằm trên cùng một đường tròn.
Câu 4:
Trên các cạnh BC, BD của hình vuông ABCD ta lấy lần lượt các điểm M, N sao cho MAN = 45. Đường thẳng BD cắt các đường thẳng AM, AN tương ứng tại các điểm P, Q.
a) Chứng minh rằng các tứ giác ABMQ và ADNP nội tiếp.
Câu 5:
c) Tìm hệ thức liên hệ giữa sđ AC và sđ AD để AK song song với ND.
Câu 6:
c) Gọi N là giao điểm của tia AM và tia DC; K là giao điểm của BN và tia EM. Chứng minh BKCE là tứ giác nội tiếp.
Câu 7:
Cho đường tròn ( O ; R) và dây BC cố định, A là điểm di động trên cung lớn BC (A khác B, C) sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Kẻ đường kính AF của đường tròn ( O ), AF cắt BC tại điểm N.
a) Chứng minh tứ giác BEDC là tứ giác nội tiếp.
về câu hỏi!