Câu hỏi:

13/07/2024 1,616

Từ một điểm A nằm ngoài đường tròn ( O ; R ) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MK AC ( I AB , K AC).

a) Chứng minh AIMK là tứ giác nội tiếp đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a) Chứng minh AIMK là tứ giác nội tiếp đường tròn. (ảnh 1)

Ta có: AIM = AKM = 90° (giả thiết), suy ra tứ giác AIMK nội tiếp đường tròn đường kính AM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn. (ảnh 1)

Ta có BEC = 90°, BDC = 90° (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP