Câu hỏi:

06/09/2022 1,151

Cho nửa đường tròn (O) đường kính AB = 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Đường thẳng kể từ C song song với BM cắt tia AM ở K và cắt tia OM ở D, OD cắt AC tại H.

a) Chứng minh tứ giác CKMH nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a) Chứng minh tứ giác CKMH nội tiếp. (ảnh 1)

AMB = 90° (góc nội tiếp chắn nửa đường tròn đường kính AB).

=> AM AB. Mà CD // BM (giả thiết) nên AM CD.

Vậy MKC = 90°.

AM = CM (giả thiết) => OM AC => MHC = 90°.

Tứ giác CKMH có MKC + MJC = 180° nên nội tiếp được trong một đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn. (ảnh 1)

Ta có BEC = 90°, BDC = 90° (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP