Cho nửa đường tròn (O) đường kính AB = 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Đường thẳng kể từ C song song với BM cắt tia AM ở K và cắt tia OM ở D, OD cắt AC tại H.
a) Chứng minh tứ giác CKMH nội tiếp.
Cho nửa đường tròn (O) đường kính AB = 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Đường thẳng kể từ C song song với BM cắt tia AM ở K và cắt tia OM ở D, OD cắt AC tại H.
a) Chứng minh tứ giác CKMH nội tiếp.
Quảng cáo
Trả lời:

AMB = 90 (góc nội tiếp chắn nửa đường tròn đường kính AB).
=> AM AB. Mà CD // BM (giả thiết) nên AM CD.
Vậy MKC = 90.
AM = CM (giả thiết) => OM AC => MHC = 90.
Tứ giác CKMH có MKC + MJC = 180 nên nội tiếp được trong một đường tròn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90 nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.
Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.
Vậy B , C , D , E cùng thuộc một đường tròn.
Lời giải

Ta có BEC = 90, BDC = 90 (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.