Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

CDB = CAB ( hai góc phụ nội tiếp cùng chắn cung BC)CAB = CFA ( cùng phụ FAC)

=> CDB = CFA. Do đó tứ giác CDEF nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh tứ giác BEDC nội tiếp được trong một đường tròn. (ảnh 1)

Ta có BEC = 90°, BDC = 90° (giả thiết) và hai đỉnh E, D cùng nhìn cạnh BC. Suy ra tứ giác BEDC nội tiếp trong một đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP