Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để chứng minh N, H, P thẳng hàng ta sẽ chứng minh NHA + AHP = 180° do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.

Thật vậy ta có: AHP = ACP (do tứ giác AHCP nội tiếp).

                        ACP = ACM (do tính chất đối xứng).                  (1)

Ta thấy vai trò tứ giác AHCP giống với AHBN nên ta cũng dễ chứng minh được AHBN là tứ giác nội tiếp suy ra AHN = ABN .

Mặt khác, ABN = ABM (do tính chất đối xứng).                         (2)

Từ (1) và (2) ta suy ra chỉ cần chứng minh ABM + ACM = 180°. Điều này là hiển nhiên do tứ giác ABMC nội tiếp.

Vậy NHA + AHP = 180° hay N, H, P thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh AHCP là tứ giác nội tiếp. (ảnh 1)

Giả sử các đường cao của tam giác là AK, CI. Để chứng minh AHCP nội tiếp ta sẽ chứng minh AHC + APC = 120°.

Ta có: AHC = IHK  (đối đỉnh),

APC = AMC = ABC (do tính đối xứng và góc nội tiếp cùng chắn một cung).

Lại có tứ giác BIHK là tứ giác nội tiếp nên ABC + IHK = 180° => AHC + APC = 180°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP