Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có MAN = 2BAM, MAP = 2MAC => NAP = 2BAC. Mặt khác ta có, AN = AM = AP nên các điểm M, N, P thuộc đường tròn tâm A bán kính AM.

            NP  = 2NQ = 2AN.sinNAQ = 2AM.sinBAC.

Như vậy NP lớn nhất khi và chỉ khi AM lớn nhất. Hay AM là đường kính của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chứng minh rằng B , C , D , E cùng thuộc một đường tròn. (ảnh 1)

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90° nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.

Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.

Vậy B , C , D , E cùng thuộc một đường tròn.

Lời giải

a) Chứng minh AHCP là tứ giác nội tiếp. (ảnh 1)

Giả sử các đường cao của tam giác là AK, CI. Để chứng minh AHCP nội tiếp ta sẽ chứng minh AHC + APC = 120°.

Ta có: AHC = IHK  (đối đỉnh),

APC = AMC = ABC (do tính đối xứng và góc nội tiếp cùng chắn một cung).

Lại có tứ giác BIHK là tứ giác nội tiếp nên ABC + IHK = 180° => AHC + APC = 180°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP