Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O;R) sao cho điểm C nằm trên cung nhỏ AB (C,D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.
a) Chứng minh năm điểmC, D, H, O, S thuộc đường tròn đường kính SO.
Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O;R) sao cho điểm C nằm trên cung nhỏ AB (C,D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.
a) Chứng minh năm điểmC, D, H, O, S thuộc đường tròn đường kính SO.
Quảng cáo
Trả lời:

Xét tứ giác SCOD có: SCO = 90, SDO = 90 (do SC, SD là tiếp tuyến của đường tròn (O)).
=> SCO + SDO = 120 là tứ giác nội tiếp.
Lại có tam giác SOC và SOD là hai tam giác vuông có chung cạnh huyền SO nên tứ giác SCOD thuộc đường tròn đường kính SO. (1)
Ta có: SCO = 90, SHO = 90 (vì H là trung điểm của AB nên OH AB).
Tứ giác SCHO có hai đỉnh C và H cùng nhìn cạnh SO dưới một góc bằng nhau nên tứ giác SCHO nội tiếp đường tròn đường kính SO. (2)
Từ (1) và (2) suy ra năm điểm C, D, H, O, S thuộc đường tròn đường kính SO.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Kẻ đường kính AM cắt d tại N. Ta có ANE = ABE = 90 nên tứ giác ABNE nội tiếp, suy ra BEN = BAN.
Mặt khác BAN = BCM, do đó BCM = BEN hay BCD = BED.
Vậy B , C , D , E cùng thuộc một đường tròn.
Lời giải

Giả sử các đường cao của tam giác là AK, CI. Để chứng minh AHCP nội tiếp ta sẽ chứng minh AHC + APC = 120.
Ta có: AHC = IHK (đối đỉnh),
APC = AMC = ABC (do tính đối xứng và góc nội tiếp cùng chắn một cung).
Lại có tứ giác BIHK là tứ giác nội tiếp nên ABC + IHK = 180 => AHC + APC = 180.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.