Câu hỏi:

29/09/2022 2,651

Tìm k sao cho phương trình: x2 + y2 – 6x + 2ky + 2k + 12 = 0 là phương trình đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta biến đổi như sau:

x2 + y2 – 6x + 2ky + 2k + 12 = 0

(x – 3)2 + (y + k)2 = k2 – 2k – 3

Để phương trình trên là phương trình đường tròn thì

 k22k3>0k<1k>3

Vậy k < – 1 hoặc k > 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi H là hình chiếu của M lên 

Suy ra MH là khoảng cách từ M đến  

MH =  3.1+4.1+332+42=2

Xét tam giác MNH vuông tại H có:

MN =MHsin60o=43

Mà R = MN =  43

Phương trình đường tròn là: x12+y12=163

Câu 2

Lời giải

Câu A:  x2+y2=4 là phương trình đường tròn tâm O(0; 0) bán kính R = 2.

Câu B: x2+y2+2x1=0x+12+y2=2  là phương trình đường tròn có tâm (-1; 0) bán kính R = 2 .

Câu C: không thể biến đổi về dạng của phương trình đường tròn.

Câu D: x2+y2+4y+3=0x2+y+22=1  là phương trình đường tròn có tâm (0; -2) và bán kính R = 1.

Vậy chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP