Câu hỏi:

12/07/2024 2,011

Hai bạn Tròn và Vuông tranh luận với nhau như sau:

Vuông: “Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc hai”.

Tròn: “Không thể như thế được. Nhưng M(x) có thể viết được thành tổng của hai đa thức bậc bốn”.

Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Từ công thức ax2 + bx2 = (a + b)x2, ta có nhận xét rằng tổng của hai hạng tử bậc cao nhất của 2 đa thức bậc hai, nếu khác 0, cũng là hạng tử bậc 2. Do đó việc cộng hai đa thức bậc hai không thể làm xuất hiện thêm hạng tử có bậc lớn hơn hai.

Điều này có nghĩa là đa thức M(x) = x3 + 1 có bậc 3 không thể viết được thành tổng của hai đa thức bậc 2.

• Vậy ý kiến của Vuông là sai.

• Chẳng hạn ta có – x4 + x3 + 1 và x4 là hai đa thức bậc 4, và tổng của chúng bằng đa thức bậc ba x3 + 1. Vậy ý kiến của Tròn là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có F(1) = a.12 + b.1 + c = a + b + c. Từ đó suy ra:

Nếu a + b + c = 0 thì F(1) = 0 nên x = 1 là một nghiệm của F(x).

Lời giải

Giả sử có đa thức Q(x) để P(x) = (x – 3) . Q(x), Khi đó ta có P(3) = (3 – 3) . Q(3) = 0.

Do đó x = 3 là một nghiệm của P(x).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP