Câu hỏi:
13/07/2024 797Cho tam giác ABC có các đường trung tuyến BM và CN cắt nhau tại G. Biết góc GBC lớn hơn góc GCB. Hãy so sánh BM và CN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trong tam giác GBC, vì \[\widehat {GBC} > \widehat {GCB}\] nên GC > GB hay \[\frac{2}{3}\]CN > \[\frac{2}{3}\]BM.
Suy ra CN > BM.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC ở E. Kẻ EM vuông góc với BC (M ∈ BC).
Chứng minh ∆ABE = ∆MBE.
Câu 3:
Gọi I là giao điểm của ba đường phân giác của tam giác. Kết luận nào sau đây là đúng?
A. I không cách đều ba cạnh của tam giác;
B. I cách đều ba đỉnh của tam giác;
C. I là trọng tâm của tam giác;
D. I cách đều ba cạnh của tam giác.
Câu 4:
Trong tam giác ABC, các đường trung tuyến AM, BN, CP đồng quy tại điểm G. Khi đó ta có:
A. \(\frac{{GA}}{{MA}} = \frac{1}{2}\);
B. \(\frac{{GB}}{{NG}} = \frac{1}{2}\);
C. \(\frac{{GC}}{{PC}} = \frac{2}{3}\);
D. \(\frac{{MA}}{{GA}} = \frac{2}{3}\).
Câu 5:
Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
Câu 6:
Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G. Hãy tìm số thích hợp đặt vào dấu “?” để được các đẳng thức:
BG = ? BN, CG = ? CP; BG = ? GN, CG = ? GP.
về câu hỏi!