Câu hỏi:

13/07/2024 843

Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC ở E. Kẻ EM vuông góc với BC (M BC).

Chứng minh MB = MC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A có góc B bằng 60 độ. Chứng minh MB = MC.  (ảnh 1)

Trong tam giác vuông ABC, ta có \(\widehat B = 60^\circ \)nên \(\widehat C = 90^\circ - 60^\circ = 30^\circ \).

Vì BE là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABE} = \widehat {CBE} = \frac{{\widehat {ABC}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).

Vậy tam giác BEC có \(\widehat C = \widehat {CBE} = 30^\circ \) nên tam giác BEC cân tại E.

Tam giác BEC cân tại E và có EM là đường cao nên cũng là trung tuyến , suy ra MB = MC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc (ảnh 1)

Ta có \(\widehat {IBC} = \frac{{\widehat B}}{2},\,\,\widehat {ICB} = \frac{{\widehat C}}{2}\), \[\widehat {BIC} = 180^\circ - \left( {\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2}} \right)\],

\(\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2} = \frac{{\widehat B + \widehat C}}{2} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).

Do đó \[\widehat {BIC}\] = 180° – 30° = 150°.

Lời giải

Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC (ảnh 1)

Xét hai tam giác vuông ABE và MBE, ta có:

BE cạnh chụng, \(\widehat {ABE} = \widehat {MBE}\) (BE là tia phân giác góc ABC).

Do đó ∆ABE = ∆MBE (cạnh huyền – góc nhọn).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP