Câu hỏi:

13/07/2024 2,582

b) Một chiếc xe tải rộng 2,2 m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Chiếc xe tải rộng 2,2 m và cao 2,6m tương ứng với x = 2,2 và chiều cao của cổng tại x = 2,2 phải lớn hơn 2,6 thì xe tải mới đi qua được.

Thay x = 2,2 vào phương trình đường tròn, ta được 2,22 + y2 = 17,64

y2 = 17,64 – 2,22 = 12,8

Vì y > 0 nên y = 12,8 ≈ 3,6 > 2,6.

Vậy xe tải rộng 2,2m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: IM  = (x – a; y – b).

Khi đó IM = IM=(xa)2+(yb)2.

Vậy khoảng cách giữa hai điểm I(a; b) và M(x; y) trong mặt phẳng Oxy là IM = (xa)2+(yb)2.

Lời giải

Phương trình đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 có dạng: x2 + y2 2ax 2by + c = 0 với a = 1; b = 2; c = −20.

Ta có: a2 + b2 c = 12 + 22 + 20 = 25.

Đường tròn (C) có tâm I(1; 2) và bán kính R = 25 = 5.

Phương trình tiếp tuyến của (C) tại A(4; 6) là:

(1 4)(x 4) + (2 6)(y 6) = 0  −3x 4y + 36 = 0  3x + 4y 36 = 0.

Vậy phương trình tiếp tuyến của đường tròn (C): x2 + y2 − 2x − 4y − 20 = 0 tại điểm A(4; 6) là 3x + 4y 36 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP