Câu hỏi:
27/10/2022 343
Cho tam giác đều ABC cạnh a, điểm M là trung điểm của AC. Khẳng định nào sau đây là đúng?
Cho tam giác đều ABC cạnh a, điểm M là trung điểm của AC. Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Do M là trung điểm của AC nên MA = MC = AC.
Suy ra:
• . Do đó phương án A là sai.
• . Do đó phương án B là sai.
Do ABC là tam giác đều nên AB = AC = a và
Tam giác ABC đều nên BM là trung tuyến cũng là đường cao.
Xét DABM vuông tại M có: BM = AB. sin A = a..
Suy ra:
• nên phương án C là đúng.
• nên phương án D là sai.
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Vẽ hình bình hành ACDE. Khi đó AE // CD và AE = CD.
Mà ABCD là hình bình hành nên AB // CD và AB = CD.
Do đó đường thẳng AE trùng với đường thẳng AB hay E, B, A thẳng hàng.
Lại có: AE = CD = AB nên A là trung điểm của EB.
Suy ra .
Do ACDE là hình bình hành suy ra .
Nên .
Vậy ta chọn phương án C.
Lời giải
Đáp án đúng là: C
Ta có:
.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.