Câu hỏi:

05/11/2022 192

Cho tam giác ABC có AD là khoảng cách từ A đến BC và BE là khoảng cách từ E đến AC. So sánh nào dưới đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho tam giác ABC có AD là khoảng cách từ A đến BC và BE là khoảng cách từ E đến AC. (ảnh 1)

Ta có BC là đường xiên từ điểm B đến AC nên BE < BC (quan hệ đường vuông góc – đường xiên).

Có: AC là đường xiên từ điểm A đến BC nên AD < AC (quan hệ đường vuông góc – đường xiên).

Do đó: AD + BE < AC + BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Cho tam giác MNP nhọn. H là hình chiếu của P trên MN. K là hình chiếu của H trên MP.  (ảnh 1)

Ta có HK là đường vuông góc kẻ từ điểm H đến PM và HP là đường xiên kẻ từ H đến PM. Do đó HK < HP.

Ta có PH là đường vuông góc kẻ từ điểm P đến MN và PN là đường xiên kẻ từ P đến MN. Do đó PH < PN

Suy ra KH < HP < PN.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ABC vuông tại C (AC < BC), CH vuông góc AB (H thuộc AB). Trên các cạnh AB (ảnh 1)

Ta có: BM = BC (giả thiết) ∆BMC cân tại B MCB^=CMB^(1)

Lại có: MCB^+MCA^=90°CMH^+MCH^=90°  (2)

Từ (1), (2) MCH^=MCN^

Xét ∆MCH∆MCN có:

MN là cạnh chung

MCH^=MCN^ (chứng minh trên)

CH = CN (giả thiết)

Suy ra ∆MCH∆MCN (c.g.c)

MNC^=MHC^=90° (2 góc tương ứng). Do đó MN AC.

Xét ∆AMN có AN là đường vuông góc hạ từ A xuống MN (chứng minh trên) và AM là đường xiên.

Suy ra AN < AM

Mà BM = BC; CH = CN (giả thiết)

Suy ra: BM + MA + CH > BC + NA + CN

Do đó: BA + CH > BC + AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình vẽ dưới đây. Biết A^>C^

Cho hình vẽ dưới đây. Biết góc A> góc C So sánh đúng là (ảnh 1)

So sánh đúng là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP