Câu hỏi:

05/12/2022 389

Cho hàm số \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[(k \in \mathbb{R})\]. Để \[f'\left( 1 \right) = \frac{3}{2}\] thì ta chọn:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C.

Ta có: \[f\left( x \right) = k\sqrt[3]{x} + \sqrt x \]\[ \Rightarrow f'\left( x \right) = {\left( {k\sqrt[3]{x} + \sqrt x } \right)^\prime } = k{\left( {\sqrt[3]{x}} \right)^\prime } + {\left( {\sqrt x } \right)^\prime }\]

Đặt \(y = \sqrt[3]{x} \Rightarrow {y^3} = x \Rightarrow 3{y^2}y' = 1 \Rightarrow y' = \frac{1}{{3{y^2}}} = \frac{1}{{3{{\left( {\sqrt[3]{x}} \right)}^2}}}\).

\[f'\left( x \right) = k{\left( {\sqrt[3]{x}} \right)^\prime } + {\left( {\sqrt x } \right)^\prime }\]\[ = \frac{k}{{3{{\left( {\sqrt[3]{x}} \right)}^2}}} + \frac{1}{{2\sqrt x }}\].Vậy để \[f'\left( 1 \right) = \frac{3}{2}\] thì \[\frac{k}{3} + \frac{1}{2} = \frac{3}{2} \Rightarrow k = 3\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án A

\(\begin{array}{l}y = 3{x^3} + {x^2} + 1 \Rightarrow y' = 9{x^2} + 2x\\y' \le 0 \Rightarrow - \frac{2}{9} \le x \le 0\end{array}\)

Lời giải

Hướng dẫn giải:

Chọn C.

Ta có Media VietJack

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP