Câu hỏi:
05/12/2022 89Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án A
\(\begin{array}{l}f'(x) = {\left( {\frac{{1 - 3x + {x^2}}}{{x - 1}}} \right)^\prime }\\\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\left( {1 - 3x + {x^2}} \right)}^\prime }\left( {x - 1} \right) - \left( {1 - 3x + {x^2}} \right){{\left( {x - 1} \right)}^\prime }}}{{{{\left( {x - 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\left( { - 3 + 2x} \right)\left( {x - 1} \right) - \left( {1 - 3x + {x^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} \right)}^2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{\left( {x - 1} \right)}^2} + 1}}{{{{\left( {x - 1} \right)}^2}}} > 0,\,\forall x \ne 1\end{array}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây
Câu 4:
Câu 5:
Câu 7:
về câu hỏi!