Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
TXĐ: \(D = \mathbb{R}\)
Ta có: \(f'(x) = 1 + \frac{x}{{\sqrt {{x^2} + 1} }} = \frac{{f(x)}}{{\sqrt {{x^2} + 1} }}\)
Mặt khác: \(f(x) > x + \sqrt {{x^2}} = x + \left| x \right| \ge 0,{\rm{ }}\forall x \in \mathbb{R}\)
Nên \(2xf'(x) - f(x) \ge 0 \Leftrightarrow \frac{{2xf(x)}}{{\sqrt {{x^2} + 1} }} - f(x) \ge 0\)
\( \Leftrightarrow 2x \ge \sqrt {{x^2} + 1} \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\3{x^2} \ge 1\end{array} \right. \Leftrightarrow x \ge \frac{1}{{\sqrt 3 }}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = 3{x^3} + {x^2} + 1\). Để \(y' \le 0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây
Câu 4:
Câu 5:
Câu 7:
về câu hỏi!