Câu hỏi:

05/12/2022 228

Tìm \(m\) để các hàm số \(y = (m - 1){x^3} - 3(m + 2){x^2} - 6(m + 2)x + 1\)\(y' \ge 0,{\rm{ }}\forall x \in \mathbb{R}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Chọn C

 Ta có: \(y' = 3\left[ {(m - 1){x^2} - 2(m + 2)x - 2(m + 2)} \right]\)

Do đó \(y' \ge 0 \Leftrightarrow (m - 1){x^2} - 2(m + 2)x - 2(m + 2) \ge 0\) (1)

\( \bullet \) \(m = 1\) thì (1) \( \Leftrightarrow - 6x - 6 \ge 0 \Leftrightarrow x \le - 1\) nên \(m = 1\) (loại)

\( \bullet \) \(m \ne 1\) thì (1) đúng với \(\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a = m - 1 > 0\\\Delta ' \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\(m + 1)(4 - m) \le 0\end{array} \right. \Leftrightarrow m \ge 4\)

Vậy \(m \ge 4\) là những giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án A

\(\begin{array}{l}y = 3{x^3} + {x^2} + 1 \Rightarrow y' = 9{x^2} + 2x\\y' \le 0 \Rightarrow - \frac{2}{9} \le x \le 0\end{array}\)

Lời giải

Hướng dẫn giải:

Chọn C.

Ta có Media VietJack

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP