Câu hỏi:

17/12/2022 3,874

Cho hàm số y=fxliên tục trên \0;  1 thỏa mãn f1=2ln2f2=a+bln3;  a,bxx+1.f'x+fx=x2+x.Tính a2+b2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Ta có   xx+1.f'x+fx=x2+x       (1)

Chia cả 2 vế của biểu thức (1) cho x+12  ta được xx+1.f'x+1x+12fx=xx+1

xx+1.fx'=xx+1, với x\0;  1xx+1.fx=xx+1dx.

Mặt khác, f1=2ln221ln2+C=2ln2C=1 .

Do đó fx=x+1xxlnx+11 .

Với x=2  thì fx=321ln3=3232ln3 . Suy ra a=32  b=32 .

Vậy a2+b2=92 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

          Đặt t=32xdt=2dxdx=12dt . Đổi cận x=0t=3x=1t=1 .

Do f(x)=x22x+3 khi x2x+1 khi x<2

I=1212x+1dx+23x22x+3dx=4112.

Lời giải

Chọn B

Xét I=113fx+32dx

Đặt x+32=tx+3=t+2x+3=(t+2)2dx=2(t+2)dt

Với x=1t=0

x=13t=2

I=202(t+2)ftdt=202(x+2)fxdx=201(x+2)fxdx+212(x+2)fxdx

=201(x+2)x2dx+212(2x1)(x+2)dx=976.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP