Câu hỏi:

17/12/2022 3,123

Xét hàm số fx  có đạo hàm liên tục trên R và thỏa mãn điều kiện f1=1 f2=4 . Tính J=12f'x+2xfx+1x2dx  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Ta có J=12f'x+2xfx+1x2dx=12f'xxdx12fxx2dx+122x1x2dx .

Đặt u=1xdv=f'xdxdu=1x2dxv=fx .

J=12f'x+2xfx+1x2dx=1x.fx12+12fxx2dx12fxx2dx+122x1x2dx.

=12f2f1+2lnx+1x12=12+ln4

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

          Đặt t=32xdt=2dxdx=12dt . Đổi cận x=0t=3x=1t=1 .

Do f(x)=x22x+3 khi x2x+1 khi x<2

I=1212x+1dx+23x22x+3dx=4112.

Lời giải

Chọn B

Xét I=113fx+32dx

Đặt x+32=tx+3=t+2x+3=(t+2)2dx=2(t+2)dt

Với x=1t=0

x=13t=2

I=202(t+2)ftdt=202(x+2)fxdx=201(x+2)fxdx+212(x+2)fxdx

=201(x+2)x2dx+212(2x1)(x+2)dx=976.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP