Câu hỏi:

31/01/2023 730

Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ:x12=y21=z1  và hai điểm A4;2;4, B0;0;2 . Gọi d là đường thẳng song song và cách một khoảng bằng 5 , gần đường thẳng AB nhất. Đường thẳng d cắt mặt phẳng Oxy  tại điểm nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình tham số của đường thẳng AB có dạng: x=4ty=2tz=2+6t .

Để đường thẳng d thỏa mãn bài toán thì ta có hình vẽ tương ứng

Media VietJack

Đoạn vuông góc chung của hai đường thẳng AB  là MN với M0;5;1,N3;1;1 .

Để d gần đường thẳng AB nhất thì d phải đi qua điểm D nằm trên đoạn MN DN=dd,Δ=5,MN=35 . Do đó MN=3DND=2;1;1 .

Vectơ chỉ phương của đường thẳng d ud=2;1;1 .

Suy ra phương trình tham số của d là x=2+2ty=1tz=1+t

Đường thẳng d cắt Oxy  tại điểm có z=1+t=0t=1x=0y=0 .

Vậy giao điểm của d Oxy  0;0;0 .

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có OA=2i+3j5kA2;3;5 ;

OB=2j4kB0;2;4

Suy ra AB=2;5;1 .

Suy ra đường thẳng AB có một vectơ chỉ phương là u2;5;1 .

Chọn A.

Lời giải

d1:x+11=y62=z1x=1ty=6+2tz=t, t

Md1M1t;6+2t;t

d2:x13=y21=z+44x=13t'y=2t'z=4+4t', t'Nd1N13t';2t';4+4t'MN=2+t3t';42tt';4t+4t'

P:3x+y2z=0 có vectơ pháp tuyến n3;1;2 .

Đường thẳng d  vuông góc với P  cắt cả hai đường thẳng d1  tại M và cắt d2  tại N suy ra 

MN=kn2+t3t'=3k42tt'=k4t+4t'=2kt=2t'=1k=1

t=2M1;2;2

Do dP  nên ud=nP .

Phương trình đường thẳng d x=1+3sy=2+sz=22s; s .

Chọn s=1A2;1;0dd:x+23=y11=z2 .

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP