Câu hỏi:
22/02/2023 1,223Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
TH1: \(m = 0\)
TH2: \(m \ne 0\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right) \Rightarrow \left\{ \begin{array}{l}y' > 0\\\frac{1}{m} \notin \left( {1; + \infty } \right)\end{array} \right.\)
Cách giải:
TH1: \(m = 0 \Rightarrow y = \frac{{x - 2}}{{ - 1}} = - x + 2\) nghịch biến trên R \( \Rightarrow m = 1\left( {ktm} \right)\)
TH2: \(m \ne 0\). TXĐ: \(D = R\backslash \left\{ {\frac{1}{m}} \right\}\)
Để hàm số đồng biến trên \(\left( {1; + \infty } \right) \Rightarrow \left\{ \begin{array}{l}y' = \frac{{ - 1 + 2m}}{{{{\left( {mx - 1} \right)}^2}}} > 0\\\frac{1}{m} \notin \left( {1; + \infty } \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1 + 2m > 0\\\frac{1}{m} \le 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{1}{2}\\\frac{1}{m} - 1 \le 0\end{array} \right. \Leftrightarrow\left\{ \begin{array}{l}m > \frac{1}{2}\\\frac{{1 - m}}{m} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \frac{1}{2}\\\left[ \begin{array}{l}m \ge 1\\m < 0\end{array} \right.\end{array} \right. \Leftrightarrow m \ge 1\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Câu 6:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!