Câu hỏi:
22/02/2023 1,005Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp:
Để hàm số nghịch biến trên R thì \(y' \le 0\,\,\forall x \in R\)
Tính \(y'\), cô lập m, đưa về hàm \(m \ge f\left( x \right)\,\,\forall x \in R\) hoặc \(m \le f\left( x \right)\,\,\forall x \in R\)
Lập BBT của hàm số \(y = f\left( x \right)\) và kết luận
+) \(m \ge f\left( x \right)\,\,\forall x \in R \Rightarrow m \ge \mathop {max}\limits_R f\left( x \right)\)
+) \(m \ge f\left( x \right)\,\,\forall x \in R \Rightarrow m \le \mathop {\min }\limits_R f\left( x \right)\)
Cách giải:
TXĐ: \(D = R\)
Ta có \(y' = m + 2\cos \,x + 3\sin \,x\)
Để hàm số nghịch biến trên R thì \(y' = m + 2\cos \,x + 3sin\,x \le 0\,\,\forall x \in R\)
\( \Leftrightarrow 3\sin x + 2\cos \,x \le - m\,\,\forall x \in R\)
\( \Leftrightarrow \sqrt {13} \left( {\frac{3}{{\sqrt {13} }}\sin x + \frac{2}{{\sqrt {13} }}\cos \,x} \right) \le - m\,\,\forall x \in R\)
\( \Leftrightarrow \sqrt {13} \left( {\sin x\cos \alpha + \cos \,x\,sin\alpha } \right) \le - m\,\,\forall x \in R\)
\( \Leftrightarrow \sqrt {13} \sin \left( {x + \alpha } \right) \le - m\,\,\forall x \in R\)
\( \Rightarrow \sqrt {13} \le - m \Leftrightarrow m \le - \sqrt {13} \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình \({\log _4}\left( {x + 2} \right) = {\log _2}x\) có bao nhiêu nghiệm?
Câu 2:
Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
Câu 3:
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Câu 4:
Có bao nhiêu giá trị nguyên của m để phương trình \({2^{2x + 1}} - {2^{x + 3}} - 2m = 0\) có hai nghiệm phân biệt?
Câu 5:
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Câu 6:
Cho bảng biến của hàm số \(y = f\left( x \right)\) như sau:
Đồ thị của hàm số đã cho có tổng số bao nhiêu đường tiệm cận đứng và ngang?
về câu hỏi!